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Abstract--A mathematical model for the advancing contact-line motion on a smooth solid surface 
is proposed. It is shown that in the spreading of liquids over solid surfaces, the flow causes a surface 
tension gradient along the liquid-solid interface which influences the flow and, in the case of small capillary 
and Reynolds numbers, determines the dynamic contact angle and the force between the liquid and 
solid in the vicinity of the contact line. The model: (a) eliminates the shear-stress singularity of the 
classical model; (b) describes the fluid motion as rolling, in complete agreement with direct experimental 
observations; (c) determines the dynamic contact angle and the tangential force dependence on the 
contact-line speed; (d) explains the existence of the maximum contact angle values < 180~; (e) predicts 
a contact-line instability and an incipient air entrainment. It is shown also that, in the case of 
small capillary numbers, the force experienced by the solid in the vicinity of the contact line is determined 
by the surface tension gradient along the liquid-solid interface and not by the shear stress. A relationship 
between the parameters of Young's equation and the limiting dynamic contact angle value is found 
and a new method for independent measurement of these parameters is proposed. Qualitative and 
quantitative comparison of the theory with the experimental data of various authors is carried out. The 
model could be used in the treatment of a number of coating and multiphase problems with moving 
contact lines on smooth surfaces and gives a sound basis for conventional models developed for rough 
surfaces. 
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! .  I N T R O D U C T I O N  

A contact line is formed at the intersection of a fluid-fluid interface and a solid. The contact-line 
motion is an important factor in many natural and various technological processes; among the 
latter, coating of solids by liquid films, tertiary oil recovery, wetting of powders, polymer 
processing, textile manufacturing, photographic film and magnetic disk production, chemical 
technologies and many others. 

The present paper deals with the advancing contact-line problem, i.e. the motion of a liquid 
which displaces a gas from a solid surface. Experimental studies have revealed the following 
features of this phenomenon: 

(i) The spreading of liquids over the surfaces of solids is rolling (Yarnold 1938; 
Dussan & Davis 1974; Ngan & Dussan 1982), i.e. the free surface velocity 
directed towards the contact line is greater than that in the bulk; material points 
initially located on the gas-liquid interface arrive at the solid surface in a finite 
interval of time. 

(ii) The dynamic contact angle 0d grows from the static value 0s to some limiting 
value 0m~x as the contact-line speed increases (Schonhorn et  al. 1966; Inverarity 
1969; Schwartz & Tejada 1972; Hoffman 1975; Gutoff & Kendrick 1982; Str6m 
et  al. 1990). 

(iii) The value of 0m,x depends on the contacting media (Schwartz & Tejada 
1972) and, though most gas-liquid-solid systems have a limiting contact 
angle equal or very close to 180 ° (Inverarity 1969; Hoffman 1975; Str6m 
et  al. 1990), for some of them it is considerably less than 180 ° (Ablett 
1923; Inverarity 1969; EUiott & Riddiford 1967; Schwartz & Tejada 1972). 

(iv) At a certain contact-line speed, which depends on the materials of the system, 
an instability of the contact-line motion occurs which results in a "sawtooth" 
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form of the contact line and gas entrainment in the spreading liquid (Burley & 
Kennedy 1976a, b; Blake & Ruschak 1979; Gutoff & Kendrick 1982). 

A mathematical modelling of the advancing contact-line problem encounters a fundamental 
difficulty. The classical formulation of the problem (Moffatt 1964) with the no-slip boundary 
condition on a solid surface gives rise to a non-integrable singularity of the shear stress, i.e. to an 
infinite force exerted by the fluid on the solid. The pressure of the fluid at the moving contact line 
is singular as well. These singularities are an immediate consequence of the multi-valuedness of the 
velocity field inherent in the classical solution, i.e. the value of the velocity vector at the contact 
line depends upon the direction from which it is approached (Batchelor 1967, p. 226; Dussan & 
Davis 1974). In the classical formulation the fluid motion is rolling [see feature (i)]; the dynamic 
contact angle value cannot be found and must be prescribed. 

From a physical point of view, the non-integrable shear-stress singularity is absolutely 
unacceptable, and the formulation of the problem must be altered in such a way that the singularity 
is removed. The main approach which is used to eliminate the shear-stress singularity is to replace 
the no-slip boundary condition on the solid surface by a slip one (Huh & Scriven 1971; Hocking 
1976, 1977; Dussan 1976; Neogi & Miller 1976; Huh & Mason 1977; Greenspan 1978; Lowndes 
1980; Durbin 1988; Baiocchi & Pukhnachev 1990). The contact angle is defined as the angle between 
two boundaries on which the boundary conditions for the fluid motion are formulated. The most 
popular boundary condition is the linear slip-shear relation (Lamb 1932, p. 586), with different 
expressions for the slip coefficient due to different physical backgrounds. 

In order to justify this boundary condition, Hocking (1976) proposed that on a scale of surface 
roughness the slip does not occur. The gas-liquid interface laying down on surface roughness 
elements produces the appearance of slip and of the contact-line motion. This scheme allows one 
to find the relationship between the macroscopic slip coefficient and the microscopic structure of 
a solid surface. Though the model does not describe the wetting process on the microscopic length 
scale, the approach itself is very interesting, since for sufficiently rough surfaces and high speeds 
of liquid spreading it presents a picture of macroscopic "wetting" of the "effective" plane surface. 
This approach, completed using the model suitable to the scale of surface roughness, in principle, 
could give the model applicable for surfaces of arbitrary roughness and arbitrary rates of wetting. 

A model attributing the slip to the surface roughness was proposed also by Neogi & Miller 
(1976). 

In the paper of Huh & Mason (1977), the slip boundary condition is based on a physical model 
of the gas-liquid interface motion. According to this model, the molecules which arrive at the 
contact line are not oriented and require a finite interval of time to attach themselves to the solid 
surface. On the length proportional to this interval of time and the contact-line speed they 
experience no drag force and after attaching themselves do not slip along the surface. The idea of 
relaxation seems very perspective, though, as it was pointed out by Dussan (1979) that: the 
argumentation of the model declares that the liquid undergoes a rolling motion, but the solution 
of the problem shows that for the boundary conditions described above it is not so. The 
formulation of Huh & Mason leads to an integrable singularity on the solid boundary and is 
equivalent to some special relative-velocity distribution. 

Durbin (1988) proposed that the slip occurs as a consequence of a direct limitation of the 
maximum shear-stress density. This yield stress is attributed to the breaking of cohesive bonds 
between the bulk of the liquid and an adsorbed surface layer. 

Baiocchi & Pukhnachev (1990) assumed that the relative-velocity distribution is the one which 
minimizes the entropy production in the vicinity of a moving contact line. The analysis carried out 
in their paper allowed them to obtain this distribution. 

The description of the dynamic contact angle dependence on the contact-line speed has been 
studied intensively during the last 20 years. Generally, in the vicinity of the contact line the 
gas-liquid interface is approximated by a plane surface with a prescribed angle between this surface 
and the solid one. This contact angle, which can be called the macroscopic one (since it is used as 
the boundary condition for the macroscopic hydrodynamic equation determining the free surface 
shape), is usually assumed to be equal to the static one, even for non-zero contact-line speed 
(Lowndes 1980; Hocking & Rivers 1982; Cox 1986; Baiocchi & Pukhnachev 1990). Far from 
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the contact line the free surface shape is deformed by viscous stresses and one may introduce an 
apparent contact angle--the angle formed by free and solid surfaces far from the contact line. 
Assuming this apparent contact angle to be the angle measured in experiments, many authors 
(Lowndes 1980; Hocking & Rivers 1982; Cox 1986; Zhou & Sheng 1990; and others) obtained good 
agreement between the models and some experiments. Relations between macroscopic and apparent 
contact angles and some aspects of the comparison of experiments to theory were discussed by 
Ngan & Dussan (1982, 1989). 

The recent results of Zhou & Sheng (1990) show, however, that the relation between measured 
and apparent contact angles is not so simple and a (non-trivial) dependence of the macroscopic 
contact angle on the contact-line speed requires further investigation. It is also difficult to 
understand how the limiting apparent contact angle could be < 180 ° [see feature (iii)], since it is 
measured far from the contact line and, therefore, should be independent of the solid surface 
material. 

It is necessary to mention that not only the apparent contact angle but also the macroscopic one 
may differ from the so-called actual or microscopic contact angle: in some cases the liquid which 
spreads over a solid surface is preceded by a thin precursor film (Hardy 1919; Bascom et al. 1964) 
which forms its own, actual, contact angle with the solid surface. Thus, when introducing the 
concept "contact angle" one should specify the manner of its application. As will be shown below, 
the main role in the description of the hydrodynamic characteristics of wetting phenomena belongs 
to the macroscopic contact angle. 

The works of Voinov (1976, 1978) and Boender et al. (1991) differ from the ones cited above, 
since they do not consider the problem of a non-integrable stress singularity, attributing it to 
non-continuum effects at a distance of the order of a molecular dimension. Using the no-slip 
condition on the solid boundary and some assumptions concerning the immediate vicinity of the 
contact line, Voinov and Boender et al. obtained the long-range asymptotics of the free surface 
shape in fairly good agreement with some experiments. 

The principal objective of the present paper is to develop an approach to the problem which 
eliminates the singularities of the classical model and describes features (i)-(iv) of the phenomenon. 
The main idea of this approach is very simple and can be explained as follows. Since, in the 
advancing contact-line motion, material elements move from a free surface to the solid surface [see 
feature (i)], their properties gradually change--asymptoting to the equilibrium properties of the 
liquid-solid interface. Thus, theflow itself causes a surface tension gradient along the liquid-solid 
interface which has a reverse influence upon the flow and, in particular, influences the dynamic 
contact angle and the force between the liquid and the solid in the vicinity of the contact line. One 
variant of the mathematical model representing this approach is given in section 2. In section 3 
the problem for small capillary numbers (Ca) is formulated, and in section 4 it is simplified using 
the technique of matched asymptotic expansions. Section 5 presents a numerical analysis of the 
problem in the case of small Ca and a qualitative comparison of the results with experimental 
observations. In section 6 the theory is compared quantitatively with the experimental data of 
different authors. In section 7 we summarize the main results of the work and discuss the 
possibilities for its generalization and its relations with other models. In section 7 we also discuss 
a way to combine the present approach with one of the models developed previously for rough 
surfaces, which could give a general model applicable to surfaces of arbitrary roughness. 

2. MODEL 

Let us consider an isothermal displacement of an inviscid gas by a Newtonian liquid which 
spreads on a smooth solid surface. Our analysis is restricted to small Ca and Re (Reynolds number). 
We consider the vicinity of the contact line, with characteristic dimensions less than the lengthscales 
of the flow field (the dimension of a spreading drop, liquid film thickness, capillary gap etc.) and 
large in comparison with the thickness of the interfacial layer, in which the physical characteristics 
of the liquids differ strongly from those of the bulk. Thus, we may consider the flow field in a wedge 
region, substituting gas-liquid and solid-liquid interfacial layers for interfacial surfaces of zero 
thickness. The structure of a three-phase interaction region (called also the contact line) deserves 
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special attention and will be discussed below. The interfaces can possess some intrinsic, "surface", 
properties (e.g. surface tension) which play an important role in the hydrodynamics of wetting. The 
component of fluid velocity parallel to the contact line is assumed to be absent. 

In an advancing contact-line motion, the liquid particles which initially form an element of the 
gas-liquid interface (e.g. AB, Fig. 1) in a finite time arrive on the solid surface and form an element 
of the solid-liquid interface (A'B', Fig. 1). During this process the surface properties of this element 
change from the equilibrium surface properties of the free surface to those of the liquid-solid 
interface. It is evident that this change in the surface properties is not instantaneous: it is a result 
of some transitional process with its specific kinetics dependent on the properties of the contacting 
materials. The finiteness of the surface tension relaxation time gives rise to the formation of regions 
with large surface tension gradients, which can considerably influence the whole motion of the 
liquid in the vicinity of the contact line. Guided by this consideration, we are going to derive the 
governing equations for the kinetics of the surface tension relaxation process. 

2. I. Surface thermo- and hydrodynamics of the relaxation process 

Before deriving the governing equations of the relaxation process and its relationship with the 
motion in the bulk, let us formulate the main idea of this derivation. It is well-known from 
experiments that the surface tension is a function of temperature (Daniels & Alberty 1975). These 
experiments deal with the equilibrium surface tension which depends on the pair of contacting 
materials. Physically this dependence is due to the specific position of the interface molecules, which 
experience different intermolecular forces from molecules of the bulk phases. From a macroscopic 
point of view, this means that the surface tension is a function of the other surface parameters 
(besides temperature), and the structure of intermolecular forces from the bulk phases determines 
the equilibrium values of these parameters. For example, one may choose the surface density, 
concentrations of surfactants and some other quantities as the surface constitutive parameters. 

We will consider the simplest case in which the surface tension depends only on temperature T 
and one more surface parameter, namely, the surface density pS. If the surface density is not 
singular (Adam 1930; Defay & Prigogine 1966), i.e. it is small in comparison with the bulk density 
multiplied by the (macroscopic) length characteristic for the flow field, the inertial properties of 
the interface are negligible but the changes in the surface density govern (in the isothermal case) 
the surface tension relaxation process. Thus, the surface tension relaxation implies mass exchange 
between the interfaces and the bulk. It is worth mentioning that the idea of the liquid-solid interface 
formation due to the mass flux into it from the bulk has been already considered on the basis of 
the equations of chemical kinetics by Blake & Haynes (1969). They have found good agreement 
between their results and experimental data, but the hydrodynamic aspects of the problem (i.e. the 
shear stress singularity) were not considered in their paper. 

Two main macroscopic approaches to the derivation of the surface hydrodynamics equations 
may be distinguished. The first, "structural", considers the interface as a layer of finite thickness 
using the continuum mechanics equations for its description. The characteristic thickness of the 
interfacial layer corresponds to the range of intermolecular forces which play the main role in 
making this layer a specific, "surface", phase (Rowlinson & Widom 1982). The distributions of 
parameters in this layer and in the bulk must be matched asymptotically. "Surface" parameters 
may be introduced as a result of the averaging of the corresponding volumetric parameters across 
the layer and, obviously, they should not be matched with the bulk parameters. In principle, this 
approach allows one to obtain equations applicable for arbitrary deviations of the system from 
equilibrium and also the transport coefficients. In the case of very small dimensions of the flow 
domain (e.g. for the spreading of droplets of about 10 8m dia) the application of the ~'structural" 
approach is the only possibility and it leads to encouraging results [see de Gennes (1985) for a 
review]. It is necessary to emphasize that the dynamic contact angle obtained by means of this 
approach is the actual one (see section 1). It is necessary to mention also that our knowledge of 
the structure of the intermolecular forces which act between the surface layer and the bulk is far 
from complete and this fact leads to some difficulties in applications of this approach (Heslot et 
al. 1989), especially in the case of finite contact angle values (de Gennes et al. 1990). However, the 
representation of the interface as a layer of finite thickness is convenient for the order-of-magnitude 
analysis and for the illustration of the results obtained by other methods. 
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If the characteristic dimensions of the flow domain are not so small, one may use another, 
"structureless", approach which is simpler than the "structural" one. This approach considers the 
interface as a geometrical surface with intrinsic, "surface", properties (Bedeaux et al. 1976). The 
main problem in this approach is to describe the mass, momentum and energy exchange between 
the interface and the bulk, since the nature and structure of intermolecular forces are not considered 
explicitly. If the deviation from equilibrium is not large, one may assume the fluxes of mass, 
momentum and energy to be proportional to the deviations of the surface parameters from their 
equilibrium values. However, this simplification leads to a number of unknown phenomenological 
coefficients which should be obtained experimentally or by means of a detailed analysis of the 
interface structure. 

In the present paper, for the derivation of the surface hydrodynamics equations we employ the 
method of the thermodynamics of irreversible processes in the framework of the "structureless" 
approach using the mathematical technique and some results of Bedeaux et al. (1976). We will also 
use the representation of the interface as a layer of finite thickness for the order-of-magnitude 
analysis. 

Since we are not interested in the consideration of a gas or a solid in the study of the advancing 
contact-line problem, it is convenient to carry out the derivation in the following way. We will 
consider a system of two immiscible fluids (I and II), assuming that the interface is formed by 
molecules of only one of  them (fluid I), and obtain the required equations using the limits of zero 
and infinite viscosity of fluid II for the gas-liquid and solid-liquid interfaces, respectively. The case 
of a real fluid-fluid system, in which the interface consists of molecules of both fluids, is more 
difficult and can be found elsewhere (Shikhmurzaev 1993a). 

Taking into account this remark, we now consider the fluid-fluid system with a moving interface 
E(t) which is defined byf(r ,  t) = 0, such thatf(r ,  t) > 0 refers to points in fluid I (the future liquid) 
andf( r ,  t) < 0 refers to points in fluid II (the future solid or gas). Following Bedeaux et al. (1976), 
we introduce some functions and their properties: 

f~<0 '  O - ( f ) =  1, f < 0 '  ~ f - - -  

g r a d f  63f 
- - - ,  - - = - v  s . g r a d f = - v ] l g r a d f l ,  if f = 0 ;  n [gradfl if f = 0 ,  63t 

Lo 6S(r, t) = Igradf(r, t)l 6(f(r ,  t)), 63r -+(f(r, t)) = +nfS(r, t); 

~t O-+(f(r, t)) = T-v~S(r, t), 

& & 
dt O-+(f) = O, ~ 6 s = O .  

d s 63 d~f 
= + v  ~''grad, - - = 0  if f = 0 ;  

dt 63t dt 

[1] 

Here 0 -+ are the Heaviside functions; 6 and 6 s are delta and "surface" delta functions, respectively; 
n is the normal to the surface which points from fluid II to fluid I; and v~ is the normal component 
of the interface velocity; the parallel components of v s will be defined below. 

Let us consider the conservation laws of mass and momentum, introducing the following 
quantities defined for all values of r: 

p = p +(r, t)O + ( f )  + pS6S + p -(r, t)O ( f ) ;  [2] 

g=ov=p-v-O-+pSvS~S+O+v+O+,  v -  i f f = O ;  [3] 
i f f  < 0 

and 

P = P - 0 - + p s s s + p + 0  +, gv=g+v+O++g-v-O-+g~vS6 s. [4] 

Here p, v, g, P and gv are the density, velocity, momentum density, stress tensor and convective 
component of the moment flux, respectively. These quantities coincide with the corresponding 
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quantities of  fluid I (superscript + )  in the region w h e r e f  > 0 and those of fluid II (superscript - )  if 
f < 0. The superscript s indicates the quantities which are only defined on the surface; the normal 
derivatives of  these quantities as well as those of  the vector n are equal to zero. 

Substituting [2] and [3] into the continuity equation and taking into account the properties of  
generalized functions [1], as well as the condition that the coefficients of  0 +, 0 - and 6 ~ are separately 
zero, we obtain the continuity equations for the bulk phases and for the interface. The continuity 
equations in the bulks have their usual form and for the interface (which consists only of  the molecules 
of  fluid I, i.e. v,, - v~, = 0), this may be written as 

(~p~ 
-(0~- + div p~v ~ = - p  +(v + - v~). [5] 

The analogous procedure carried out with the momentum balance equation, considering the fact 
that the coefficients of  6 ~ and the normal component  of  the coefficient of  (~/0 r)6 ~ are separately zero 
(Bedeaux et al. 1976), gives the usual momentum balance equations in the bulks and the following 
equalities for the surface parameters: 

and 

n .  W = 0 [61 

~gS 
0~- + div g~v ~ + p +v+(v + - v~,) = div ps + n.  (P+ - P- ). [7] 

The latter equation for the non-singular surface density pS (i.e. if pS~  p +. L, where L is the 
lengthscale of  the flow domain) takes the form of a known generalized equation of  capillarity: 

div W + n- (P+ - P - )  = 0. [8] 

Now we will consider the conservation of energy and construct relations which define the mass, 
momentum and energy fluxes between the interface and the bulks. We define the energy per unit 
volume ev, the energy current Je and the heat current J0 as 

e v = e , ~ 0 + + e ~ 6 ~ + e ;  0 , Je=J+O+ +JSeO~+J~O = - P ' v + e ~ v + J  u. 

The energy conservation equation for the surface phase takes the form 

d~e~. 
- e ~divv S+d iv (P  ' ' v 0 - d i v J ~ + n - ( P + . v  + - P  -v ) 

dt 

- (Jq+,, - Jq], ) - e + (v n + -- V ~). [9] 

In contrast  to Bedeaux et al., we will consider the one-temperature model (close to the interface 
T + = T = T ~ = T); the main emphasis being on the influence of  the surface density changes on the 
surface phase hydrodynamics. The Gibbs relation for the surface phase (assumed to be two-paramet-  
ric like fluid I) has the usual form 

du~ = T d S ~ + # ~ d p L  [10] 

Here u s and S~ are the internal energy and the entropy per unit area; and #~ is the surface chemical 
potential. Defining the non-convective entropy fluxes in the bulks and the interface as the ratios J + / T  
and J~q/T, respectively, we obtain from [9], [10], [7], [6] and [5] the following entropy balance equation: 

dt S ~ . d i v ¢ - d i v  - - S + ( v  + - v ~ , ) + a  ~, [11] 

where 

1 1 1 
a s =  J~. g r a d ~ + ~ ( p s + p S l )  : grad v ~ + ~ n - ( P +  + P - ) . ( I -  nn). (Vl~- - v t ~ )  

l ( 1 p , + ) l  
+~p+(v+--V~n)  # ' - - / a + + ~ % - n "  .n - ~ n . ( P + - P  ) . ( l - n n )  

• [v~ 1 + + v / ) ]  - ~ (v, [12] 
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Here a S is the surface entropy production; # + and P'+ = P+ + p +I are the chemical potential and 
the viscous stress tensor of  fluid I, respectively; I is the metric tensor; and the subscript [[ denotes 
the component of  the vector parallel to the interface. The surface pressure pS, which is equal to 
the negative surface tension, is assumed to be related to the surface chemical potential in the usual 
way: pS/.,ts = u~ - TS~ +pS. 

Representing the right-hand side of [12] as a sum of  thermodynamic flux-force pairs and using 
the usual approach of irreversible thermodynamics (de Groot  & Mazur 1962), we can construct 
linear relations linking the thermodynamic fluxes and forces. Obviously, this approach is valid 
close to equilibrium; the conditions of  its applicability must be determined experimentally. Being 
interested in the principal effects which follow from our approach, we neglect all the cross- 
coefficients. 

The last term of [12] defines the parallel component of vS: 

vS = ½(v~ + v ( )  + ~ div W" (I - nn). [13] 

The coefficient ~ characterizes the influence of  the surface pressure gradient on the velocity of  the 
mass transport along the interface. 

The first term on the right-hand side of  [12] defines the Fourier law on the surface. This term 
is of no interest for the isothermal motion discussed below. Taking into account the two-dimen- 
sional isotropy of the surface and the isotropy in the bulk, we obtain from the next three terms 
of  [12] that 

ps = _pS(l _ nn) + 2s(div vS)(l - nn) + 2r/~(l - nn). E s. (I - nn), [14] 

½ n .  (P+  + P - ) .  (I - nn) = B(v+ - v : )  [15] 

and 

[ ' l p+(v + -- v~) = kp p ' (p ' ,  T) -/~+(p~-,  T) + ~--~- n • P~-. n . [16] 

Here 2s and qs are the "surface" viscosity coefficients; // is the coefficient of  sliding 
friction (Bedeaux et al. 1976); kp is the coefficient of  the interface-bulk mass exchange; 
E ' =  (grad vS) 'ymm is the surface rate-of-strain tensor; and p~- is the pressure of  the fluid in the 
absence of  motion. 

Now let us carry out an order-of-magnitude analysis representing the interface as a layer of  
finite thickness. For this purpose, it is reasonable to assume that the viscosity coefficients in the 
layer are of  the same order as those in the bulk. Comparing the last two terms on the right-hand 
side of [14] with the first one, we obtain that their ratios have the order of  C a . h / L ,  where 
Ca = / t  • U/a  is the capillary number and h, L, #, Uand  a are the layer thickness [~  10 -9  t o  10 -8 m 
(Rowlinson & Widom 1982, pp. 174 and 181)], the characteristic length of  velocity changes, the 
shear viscosity, the characteristic velocity and the surface tension, respectively. For  macroscopic 
L and Ca ~< 1, it is evident that Ca • h / L  ,~ 1 and the surface phase is "ideal" in the hydrodynamic 
sense, i.e. 

ps = -p~(I  - nn). [17] 

Using [8], [15] and [17], we obtain a generalization of  the no-slip boundary condition: 

n. P '+ .  (I - nn) - ½ grad pS =/~(v+ _ vi ~ ). [18] 

Obviously, this boundary condition eliminates the shear-stress singularity of  the classical solution. 
Applying [18] to the liquid-solid interface, we see that it relates the surface tension gradient with 
apparent slip without violation of the no-slip condition of the interface side facing the solid (Fig. 2). 
Representing again the interface as a layer of  finite thickness and assuming that the slip coefficient 
/~ is of order I~/h, we find that the ratio of the first and the last terms of  [18] has the order h / L  ~ 1 
everywhere except the immediate vicinity of the three-phase interaction region, which is discussed 
below. Thus, in the absence of  the surface tension gradient, the shear friction could cause apparent 
slip of  a liquid on a solid surface only at a distance of  order h (,-- 10 -9 to 10 -s m) from the contact 
line. Far from the contact line, if the surface tension gradient is absent, [18] becomes the usual 
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no-slip boundary condition, v + = v  . Equation [18] without the second term is often used in 
conventional models for the contact-line motion on smooth and rough surfaces. However, it is 
necessary to emphasize that in applications with rough surfaces [18] without the second term is a 
result of averaging and therefore the slip coefficient fl has another meaning and can be calculated 
by a purely hydrodynamic consideration (Hocking 1976). In section 7 we will discuss a very natural 
way of combining the approach of Hocking with the present one for surfaces of arbitrary 
roughness. 

The second term in [18] has the order (6p~)/L,,, where L, is the characteristic length corresponding 
to surface tension changes of  order 6,o s. It is evident that this term may be comparable with the 
right-hand side of  [18] for reasonable values of L~. Indeed, for example, if 6p s,.~ 10 2 to 
10 ' N • m ~, U ~ 10 z m - s ', /t --~ 10 3 Pa • s and h ~ 10 -9 to 10 8 m, one obtains L~ ~ 1 0  - 6  to 
10 am. 

The following remarks concerning the estimates given above should be noted. As will be shown 
below, we do not require any fixed degree of relative slip and o f p  s deviation from its equilibrium 
value. Both quantities depend on the contact-line speed and change according to the conditions 
formulated below. Thus, the L, obtained above could be used only as a preliminary estimate of 
its order of magnitude (the upper limit). 

The second remark concerns the value of fl used for the order-of-magnitude analysis. According 
to some experiments with very thin films, the value of  k' therein seems to be considerably greater 
than that in the bulk. Taking this into account, one could obtain a smaller value of L~ than is given 
above. 

Equation [16] determines the mass exchange between the bulk and the surface phase. For 
simplicity in the isothermal case considered here we will use the linear equation of state which 
reflects the main effect, i.e. changes of the surface pressure due to the surface density deviations 
from the value obtained in the absence of the non-symmetric influence of the bulks: 

pS= 7 ( p ~ -  p~;). [19] 

A possible generalization of  this equation will be discussed below. Equation [19] allows us to define 
the equilibrium surface density p~ by the equality 

US(pS(pSe), T) = U +(P~, T). [20] 

Now the chemical potentials difference ~~ - ~ + in [16] close to equilibrium may be approximately 
rewritten in the following way: 

# , _  l.,t + = ( p ~ ) ( p S _  p;).  [21] 

The last term in the square brackets on the right-hand side of [16] describes the mass flux into 
(or out of) the surface phase due to the liquid motion. We assume that this mass flux is negligible 
in comparison with the one caused by the deviation of the surface density from its equilibrium 
value. The corresponding criterion could be easily written but, as long as the value of dl~/dp ~ is 
unknown, it would have a rather formal character. More details concerning this assumption and 
the order-of-magnitude analysis can be found elsewhere (Shikhmurzaev 1993a). Obviously, the 
solutions of the simplified model will belong to the set of solutions of the general model. 

Introducing the parameter 

1 
r - , [22] 

kp d/l~ 
dp, (p ; )  

and taking into account [16], [19]-[22] and the simplifications mentioned above, we may finally 
rewrite [5] as 

O--T + div p'v' = [23] r 

The parameter z, called the surface tension relaxation time, characterizes the interval of  time 
required for the interracial structure formation (but not for the attachment of molecules to the 
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solid) and, in this sense, the present model generalizes that of Huh & Mason (1977). The idea of  
interfacial layer formation due to the mass flux from the bulk into the liquid-solid interfacial layer 
has been developed by Blake & Haynes (1969) also, based on the equations of chemical kinetics. 
However, Blake & Haynes did not consider the problem of the shear-stress singularity. 

It is evident that for a non-singular surface density the surface-bulk mass exchange may be 
neglected in the boundary conditions for the bulk equations. 

3. F O R M U L A T I O N  OF THE PROBLEM 

Let us distinguish the following two asymptotic regions: 

• The "outer" region (region 1, figure 1), where the classical solution (Moffatt 1964) 
with the no-slip boundary condition on the solid and the zero tangential stress on 
the free surface, 

i ~bo d~o [24] 
- r O0 ' v0 = dr 

with 

~'0 [(0 - 0d)sin 0 - 0 cos 0d" sin(0 - 0d)], 
sin 0d" cos 0d - 0d 

is valid [the solution is represented in a dimensionless form, $ is the stream 
function; u, v are, respectively, the radial and the transversal components of the 
velocity in a co-ordinate frame moving with the contact line; (r, 0) are polar 
co-ordinates in the plane of motion, defined such that the origin is at the contact 
line and the solid surface is in the plane 0 = 0; hereafter, the subscript 0 denotes 
parameters of the classical solution]. 

• The "slip" region (region 2, figure 1) with characteristic dimension l ... Uz,  where 
the surface tension changes (and, therefore, slip) take place. In this region 
interfaces can be considered as geometrical surfaces of zero thickness and [8], [13], 
[17]-[19] and [23] are valid for the description of the surface parameter distri- 
butions. In comparison with I the dimensions of the three-phase interaction region 
in the plane of the flow may be neglected and this region considered as a point 
(the projection of the "contact line" to the plane of the flow). 

The solutions of the Stokes equations in these two regions must be asymptotically matched as 
the ratio of I to the macroscopic length L tends to zero (E = I / L  o0) .  Below we consider only the 
terms of O(1) as E o 0  and for these terms the matching procedure is very simple (see [30]). 

Let us consider the boundary conditions for the Stokes equations in the "slip" region. We will 
use low indices 1 and 2 to mark the surface parameters of the gas-liquid and solid-liquid interface, 

O=Od 

GAS G~~ "m LIQUID 
" ~  region 1 

/ '  reg|on 2\region 2\ 
GSG--GSL / ' .  B' A' 0 == 0 ~ , w , , l l l l l l , , ~ i I  | l , , , , , , , , ,  | , , , i , , ,  

U "- 
R SOLID 

Figure I. A general sketch for the flow perpendicular to the contact line and the force balance. 

MF 19/~-E 
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Figure 2. A detailed sketch for the flow in the immediate vicinity of the contact line. Region 3 has 
characteristic dimensions of O(Ca). The interfaces are depicted as layers of finite thickness in order to 
show schematically the velocity distribution across the interface. The velocity on the side of the interfacial 
layer facing the liquid tends to that of the solid as the distance from the contact line increases. The actual 

slip is absent everywhere except for in the three-phase interaction region (i.e. the "contact line"). 

respectively. I t  is convenient  to make  the variables dimensionless using the following characterist ic 
parameters :  p~ (the surface density which cor responds  to the zero surface pressure,  see [19]); 
a = -pS(p]c  ) (the equi l ibr ium tension o f  the gas- l iquid interface); U (the speed of  the solid in the 
chosen co-ord ina te  f rame)  and; 1 = UT (the characterist ic  length o f  the surface tension relaxation).  

Mak ing  use o f  [13], [17] and  [! 9], for  the s ta t ionary  contact- l ine mot ion  we m a y  rewrite equat ions 
[23], [18] and  the tangential  project ion o f  [8] for  the gas- l iquid interface as follows: 

dp~v] 
dr  = - ( P ] - P ] ¢ ) '  [25] 

dp] _ 4VZ(u(r ,  0d) - -  V] ) [26]  
dr 

and 

1 Ou dp]  
Ca  r ~-0 (r, 0d) + ). ~ = 0 ,  [27] 

where 

Ca  = #___U 2 = 7P[~ V 2 ___ */?U 2 
a ' a ' a 2 ( I + 4 A ) '  A =~f l .  

Here  2 is the characterist ic  compressibi l i ty  of  the liquid and V is the dimensionless contact-l ine 
speed. I f  the flow in the surface phase  is imagined as a combina t ion  o f  the Couet te  and Poiseuille 
flows in a plane channel  (see figure 2), the pa rame te r  A characterizes the relevance o f  such an 
analogy:  for  the channel  flow A = 1/12. 

Fo r  the sol id-l iquid interface [23], [18] and [13] take the form 

dp~2v~ 
dr = - ( P ~ - P ~ e ) ,  [28] 

and 

2Ca 10u dp~z 
2(1 + 4.4) r O0 (r, O) - dr = 4V2(v[ - 1) [29] 

2A dp~ 
u(r, O) = 2v~ - 1 + 

(1 + 4 A ) V  z dr " 
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The solutions in the "slip" and "outer" regions must be matched and so 

p i m p l e ,  u(r, Od)~Uo(Od), p ~ p ) , ,  u(r, 0 )~ l  asr--*~.  [30] 

Furthermore, we have the mass balance equation at the contact line, 

p] (0)v~ (0) + p~(0)v~(0) = 0, [31] 

which links the mass fluxes into and out of the contact-line region. If the surface is prewetted or 
the precursor film takes place, [31] must be modified in a manner which takes into account the 
additional mass flux into the contact-line region (Shikhmurzaev 1993b). 

To find the dynamic contact angle value we must consider the force balance at the contact line. 
In statics the contact angle 0s is related to the tangential projections of forces acting on the contact 
line by Young's equation, which can be written in terms of surface pressures as 

pS(p]~)cos Os = P~SG -- p S (p ~ ) .  [32] 

The parameter asG(=--PIG) is the surface tension of the gas-solid interface (Young 1805). An 
alternative interpretation of p ~  and a possible method of its measurement are discussed below. 
Equation [32] implies that the vertical component of the force acting along the gas-liquid interface 
is always balanced by a reaction force from the solid (figure 1). 

Considering the tangential projection of momentum of the contact line and neglecting the 
inertial components of the momentum fluxes as before, we may write the generalized Young's 
equation as 

pS(p] (0))cos Od = P~sc - pS(p~,(O)), [33] 

where the surface pressure and surface densities are connected by [19]. 
Now we can formulate the moving contact-line problem for small Re and Ca in the following 

way. If the bulk pressure is made dimensionless using the quantity #/z, the velocity and the pressure 
in the bulk obey the (dimensionless) Stokes equations, 

div u = 0, Vp = Au, [34] 

and satisfy [25}-[31] and [33]. The static contact angle is related to the quantities involved in the 
boundary conditions by [32]. 

Taking the projection of [8] tangential to the solid surface, we obtain that the (dimensionless) 
density of the force acting on the solid 

f , =  dp s 1 du 
- d--r- + C a  r if0 (r, 0).  [35] 

4. SMALL Ca 

The consideration of [25}-[34] is rather difficult and here we will discuss only the case of small 
Ca. As Ca--*0, the system [25]-[34] becomes singularly perturbed and its solution can be found 
using singular perturbation methods. The outer solution is valid in the region which we will call 
"intermediate", since in our terminology the "outer" region (region 1, figure 1) is the one associated 
with the classical solution [24]. The "intermediate" region occupies the major part of the "slip" 
region and below we will assume for simplicity that this region is shown in figures 1 and 2 as 
region 2. 

The inner solution of [25]-[34] is valid in region 3 (figure 2), referred to below as the "inner" 
or "viscous" region. The inner variable is ~ = r /Ca.  Below we consider only the main terms of 
asymptotic expansions in Ca as Ca---0. 

In the "intermediate" region we may neglect the terms proportional to Ca in [27]. Integrating 
[25]-[27] and using the matching conditions [30], we obtain 

P] = Pie, u(r, Oa) -- v](r) = U0(0d). [36] 

Thus, the surface density and, consequently, the surface pressure of the gas-liquid interface have 
their equilibrium values up to the "inner" region. The interface velocity is equal to the radial 
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velocity of the classical solution at 0 = 0d, U0(0d). It can be shown that the next terms of the 
interface density and the surface velocity asymptotic expansions, as Ca~0 ,  have the orders 
Ca- In(Ca) and Ca, respectively. 

Equations [28] and [29] in the "intermediate" region take the form 

dp~v~ _ (P~- p~), dp~ _ 4V2( 1 _ v~) [37] 
dr dr 

and 

2A dp[ 
u(r,O) = 2 v [ -  1 + (1 + 4A)V 2 dr " [38] 

It is convenient to rewrite the last two matching conditions [30] in an equivalent form: 

~ v~-~l ~oo.  [39] p 2-'~p 2e, as r 

Let us consider the "inner" region, marking all the variables there with a tilde (-) and using the 
inner independent variable ~ = r/Ca. From [25]-[29], we immediately obtain that 

~], t~,  f ] ,  f~ = const, [40] 

i.e. the main terms of the asymptotic expansions in Ca of ~ and t~ ~ are independent of t:. Taking 
this into account and using the matching conditions in the form 

lim $ = lim ~b, [41] 
~ ~c r ~ O  

we come to the conclusion that [31] and [33] are valid for the inner limits of the solution in the 
"intermediate" region. Making use of [36] and [24], we may rewrite [31] as 

p)(0)v~(0) = -p~uo(Od), U0(0d) sin 0d-- 0dCOS 0d [42] 
= sin 0d cos ~ --- 0d" 

Thus, the dynamic contact angle may be calculated from [37], [42], [33], [39] and [19], which may 
be rewritten in dimensionless form as 

p S = 2 (p~ - 1). [431 

We remind the reader that the constants Pie, P~e, P~G and 0s are related by [32]. 
Now let us consider the force f ( = - f , )  experienced by the liquid. Neglecting the term 

proportional to Ca in [35], we see that in the "intermediate" region the tangential component of 
the force density equals the surface pressure gradient 

f(r) = ~ (p~(r)). [44] 

In the "inner" region)7= O(1) as C a ~ 0  and both terms on the right-hand side of [35] are of the 
same order. The matching condition [41] gives f(0) =)7(oo) and the total tangential force calculated 
with the help of the uniformly valid expansion 

F=fo[f (r)+f(-~a)- f (oo) ldr=p~(p~)-pS(p~2(O))+O(Ca)  as Ca--0. 

Using [32] and [33], taking into account that dimensionless p~(p]~) = - 1  and neglecting the terms 
of order Ca, we may rewrite the expression for F as 

F = cos 0~ - cos 0d. [45] 

It is an interesting result, since the relationship [45] often used in the analysis of wetting phenomena 
as an additional empirical condition is derived theoretically on the basis of the present approach. 
This derivation makes clear the conditions of applicability of [45]. 

Thus, we may conclude that in the framework of the present approach the macroscopic 
characteristics of the advancing contact-line motion (the dynamic contact angle and the force 
experienced by the liquid) in the case of low Ca can be calculated from [37], [42], [33], [39], [43], 
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i.e. using only the solution in the "intermediate" region. We should point out that in the present 
model the actual slip does not occur, since the velocity of the interface side facing the solid surface 
is equal to the velocity of the solid. This property of the model is in complete agreement with the 
results obtained by molecular-dynamics simulations (Koplik et al. 1988, 1989; Thompson & 
Robbins 1989). These studies show that the "no-slip boundary condition broke down within ~2  
atomic spacing from the contact line" (Thompson & Robbins 1989), i.e. in the three phase-inter- 
action region (the "contact line"), if we translate this assertion into the thermodynamic language 
used here. 

It is necessary to make a special remark about the pressure singularity. In the classical 
solution [24] the pressure singularity is not integrable and has the form p ~ l/r. If one 
eliminates the shear-stress singularity, introducing in some way the slip boundary condition, 
the pressure becomes integrable, p ~ In(r), but the singularity still remains. This singularity 
exists, since the surface which bounds the flow domain, i.e. the region where the Stokes 
equations are used, is not smooth. The idealized model, consisting of the flow domain with 
simple geometry and the slip boundary condition eliminating the bulk velocity discontinuity at 
the edge, is convenient for a mathematical consideration but it leads to the appearance of 
the stagnation point at the edge of the "bulk" as well as to the pressure singularity. Obviously, 
in the vicinity of the three-phase interaction zone (i.e. the "contact line") one may choose 
the surface separating the "interface" and the "bulk" in different ways and, in general, this 
surface should be smooth, e.g. the surface S in figure 1. Using the mass and momentum 
balance equations in the integral form, we could easily show that in the case of small Ca for 
any regular boundary conditions on a smooth surface S the pressure singularity and the 
stagnation point disappear, but the macroscopic parameters of the advancing liquid are still 
determined by the same system, [37], [42], [33], [39] and [43], which describes the distribution of 
surface quantities in the intermediate region. This is a very essential feature of the present model. 
Thus, bearing in mind this remark, we may use the approach developed for the modelling of wetting 
phenomena. 

It is necessary to note that, in contrast to conventional models, our approach guarantees that 
the fluid motion is rolling [see feature (i) in section 1]: it is an immediate consequence of [42] which 
binds the mass fluxes into and out of the contact-line region. 

We must point out also that in a general case, the 0d considered here is not equal to either the 
actual (0,c t, figure 2) or the apparent contact angle. The latter is formed by the solid surface and 
the free surface far from the contact line. As has been shown by Ngan & Dussan (1982), the 
apparent contact angle depends on the measuring device, while the angle introduced here is a 
characteristic of the wetting process and is independent of the manner of its measurement. We will 
call 0d the macroscopic dynamic contact angle to distinguish it from the actual and apparent angles. 
It is necessary to mention that (1) the macroscopic contact angle alone is the boundary condition 
for the hydrodynamic equation which describes the free surface shape and (2) in many experiments 
just the macroscopic contact angle was measured. 

5. ANALYSIS 

In this section we investigate the properties of the problem [37], [42], [33], [39] and [43]. As 
was shown in the previous section, the macroscopic properties of the advancing contact-line 
motion can be obtained from the system of ordinary differential equations [37] with boundary 
conditions [42], [33], [39] and [43] and the equality [45] defining the force between the liquid 
and the solid. The characteristics of the bulk flow are present implicitly through the radial 
velocity of the free surface U0(0d) (see [42]). The obtained value of 0d defines the flow domain 
and [38] gives the distribution u(r,O), which together with u(r, Od) (=U0(0d), see [36]) sets the 
boundary conditions for the Stokes equations [34] which describe the flow field in the "intermedi- 
ate" region. 

The solution of [37], [42], [33], [39] and [43] depends on four dimensionless parameters: Pie, V, 
PIG and 0s (Ple is replaced by 0s with the help of [32]). The dimensionless surface density Pie 
characterizes the "rarefaction" of a liquid at a gas-liquid interface. To carry out the order-of- 
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magnitude analysis it is convenient to represent the interface as a layer of finite thickness h, assuming 
that 

t r ~ p . h ,  p ~  "(P-Po) ,  PS~P "h. 
F 

Using the values (Daniels & Alberty 1975; Moelwyn-Hughes 1961) 

a ~ 1 0  2 t o l 0 - 1 N - m  ~, h-,~10 9 to10-Sm,  

(a~-~PP)T"~(I to 2)-106m2"s 2, p0 ~ 103kg.m 3, 

we have 1 - p~, ~ 5. (10 4 to 10-2). The expression for the dimensionless speed V shows that in 
wetting phenomena there is a specific characteristic contact-line speed: 

UCL = F a2 ( I + 4A + 
l_ 

It is interesting that UcL is determined only by the properties of the spreading liquid and is 
independent of the characteristics of the media which are in contact with the liquid in the vicinity of 
the contact line. The parameter UcL is of order 1-102. m.  s-~. 

Thus, the parameter V depends only on the properties of the liquid, P~e is a function of the 
gas-liquid pair while 02 and P~sa are determined by the materials of the three contacting media. 

The system [37], [42], [33], [391 and [43] was solved numerically using the fourth-order Runge-Kutta 
method. The results are presented in figures 3-7 and 9-13. 

Let us consider the case p ~  = 0. The role and physical interpretation of this parameter when it is 
not zero will be discussed later. If P~c = 0, the horizontal component of the force exerted on the 
contact line from the free surface is entirely balanced by the surface pressure of the solid-liquid 
interface (see [32] and [33]). In figure 3 we present the dependence of the dynamic contact angle on the 
dimensionless contact-line speed V for different values of p~e. We remind the reader that 
2 = p~o~/tr = 1/(1 - P~e). Curves !, 2 and 3 correspond to p~ = 0.95, 0.99 and 0.999, respectively. To 
illustrate the influence of the other parameters, in the following we will fix the value of p~,  say 
p~ = 0.99. As V-- ,~,  0d~0m,x = 180 ° and p~(O)~p~. 

Figure 4 shows the dependence of 0d on Vfor different static contact angles. These curves describe 
the evolution of  0d for the liquid spreading over different solids for which the limitation P~c = 0 is 
valid. In this case the limiting contact angle value is 0max = 180 °, independent of0~. Such 0d (V) depen- 
dence is typical for most gas-liquid-solid systems (Inverarity 1969; Hoffman 1975; Str6m et al. 1990). 

Typical distributions of the tangential force density f acting on the fluid obtained from [44] are 
shown in figure 5. As expected, the force density increases as the contact-line speed grows. Equation 
[45] and the dependences shown in figure 4 describe the velocity dependences of 0d and the total 
tangential force F for different 02 without any empirical adjustable functions. 

Recent results of Zhou & Sheng (1990), obtained for two different models with slip on the solid 
surface, show that in the case of small Ca the difference between the macroscopic (in our sense) 
and apparent contact angles is negligible and, since experiments reveal considerable deviations of 
the measured contact angles from the static values, this fact must be attributed to the dependence 
of the macroscopic contact angle on the contact-line speed. However, this dependence is usually 
ignored in theoretical studies. Zhou & Sheng (1990) also used [45] as an additional condition to 
calculate the force between the liquid and the solid. In our model the dependence of the 
macroscopic contact angle on the contact-line speed is obtained in a natural way, and [45] is derived 
theoretically. 

Now let us consider the case P[a v~ O. The parameter asc = -P~c in Young's theory characterizes 
the surface tension of a gas-solid interface. However, one can "measure" only the difference 

trsc - aSL = P S(p ~) _ p ~ 

by substituting measured values ofp~(p~e) and 02 into [32]. It is necessary to emphasize that Young's 
equation contains the forces acting on the contact line and trsa is not equal to the true "surface 
tension of the solid". 
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We are able to propose a method which allows us, at least in principle, to obtain PIG from 
dynamic experiments. Indeed, calculations show (figure 6) that P~G determines the value of  0m, ~. 
If  piG < 0, 0ma ~ becomes < 180 ~ and sensitive to the value of p]~ but remains independent of 0,. 
A limiting contact angle value of < 180 ° was observed in some gas-liquid-solid systems (Ablett 
1923; Elliott & Riddiford 1967; Schwartz & Tejada 1972). 

Experiments (Elliott & Riddiford 1967; Schwartz & Tejada 1972) show that 0m,~ < 180': can be 
obtained by a proper choice of the whole gas-liquid-solid system and the major role belongs to 
the liquid-solid pair and not to the gas-solid one. Thus, P~G may be interpreted as a tangential 
component of the reaction force acting on the contact-line region from a solid. This component 
depends on the nature of  all the contacting materials. 

Figure 6 shows that 0ma x is a function of  Pie  and P[G. Since p]~ is a property of the gas-liquid 
interface only, it can be measured independently. Thus, if 0m, ~ < 180 °, we may suppose that P~G < 0 
and use the value of  0m,. to determine P~G. 

It is necessary to emphasize, however, that if the solid surface is prewetted, 0m,, becomes 
considerably less than 180 °, even for positive PIG. The detailed analysis of  this case can be found 
elsewhere (Shikhmurzaev 1993b). 

A number of  experiments (Burley & Kennedy 1976a, b; Blake & Ruschak 1979; Gutoff  & 
Kendrick 1982) show that at a certain contact-line speed the spreading of  a liquid on a solid surface 
becomes unstable: the contact line takes a "sawtooth" form and air entrainment begins. Usually 
the air entrainment occurs at 0d = 180 °. In this connection let us consider the properties of the 
model for p]~ > 0 (figure 7). Calculations show that, if piG > 0, the system [37], [42], [33], [39] and 
[43] has a maximum speed of wetting V, ,  so that for V > V, the solution of the problem fails 
to exist. As V = V, ,  0d ---- 180 °. If the velocity of the solid is greater than V, ,  the contact line must 
change its form to make the normal component of  the velocity equal to V, .  Thus, the contact-line 
form becomes "sawtooth".  For the first time, the existence of a maximum contact-line speed and 
its connection with changes in the contact-line form and air entrainment were considered by Blake 
& Ruschak (1979). 

Calculations show (figure 7) that V, is independent of  the "rarefaction" of the liquid at a 
gas-liquid interface, (1 -p ]~) ,  and decreases as the absolute value of  p]  G increases. An augmenta- 
tion of  0+ decreases the value of  V,  as well. It is interesting to note that for certain values of p]~ 
and PIG the curve 0d (log V) has a practically rectilinear region. The same regions (with the same 
inclinations) are present in experimental curves (Gutoff & Kendrick 1982). However, it is difficult 
to carry out a quantitative comparison of  theoretical results with these experimental data. Indeed, 
the theoretical curves depend on two parameters, p]~ and P~G, unknown in this experiment and 
on the value of  l og (Ca) - log (V) ,  which links the theoretical and experimental dimensionless 
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Figure 7. Dynamic contact angle vs  d i m e n s i o n l e s s  c o n t a c t - l i n e  speed for 
p ~  > O: l --p]= = 0.95, O, = 60 °, p ~  = 0.5; 2- -p] ,  = 0.99, O, = 60 °, 
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Figure 8. Possible generalization of the p+(p~) 
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3--p~,m; 4--p~; 5--p~,,,. 
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velocities (see section 6). Since these unknown parameters strongly (and in different ways) influence 
the shape of the theoretical curve in the (Ca, 0d) co-ordinate plane and the value of V,,  any 
quantitative comparison of the theory with these experiments will not seem convincing. At the 
present time we may only state that our theory is in good qualitative agreement with these 
experiments. 

It is worth mentioning that the existence of a maximum contact-line speed is possible in the 
P~G < 0 case as well. In this case, as V increases, p~(0) changes from p~ to a certain value 
P)min < P~,. If the interface is rarefied so that pS becomes less than p~,, the equation of state [19] 
may become inapplicable and should be altered in a way which allows one to take into account 
the fact that the surface tension of the interface is bounded. A possible variant ofp~(p s) dependence 
is shown in figure 8. Calculations with a pS(p~) dependence of this type give that, ifp~G < 0, at a 
certain value of V = V** the surface pressure p'(p)(O)) reaches the minimum of the curve pS(p 0 
and for V > V** a solution of the problem fails to exist. The dynamic contact angle value which 
corresponds to V** is < 180 °, though, if the deviation of 0d from 180 ° is small, it is rather difficult 
to detect it experimentally. 

6. COMPARISON WITH EXPERIMENTAL DATA 

As was noted in the previous section, the quantitative comparison of theoretical and experi- 
mental results for P~G :# 0 requires independent measurement (direct or indirect) of a number 
of parameters. However, it is possible to carry out a preliminary comparison of experiments 
and theory. In some works, experimenters have reported on the asymptotic behaviour of the 
dynamic contact angle as the contact-line speed grows. If 0d asymptotically tends to 180 °, we may 
conclude that P~G = 0 and use the corresponding theoretical curve for the experimental data 
description. Besides this, it is necessary to mention that, if the values of [P~GI and/or [l - p ~ l  are 
small, the deviation of 0d(log V) from the corresponding curve obtained for P~G = 0 becomes 
considerable only for 0o close to 180 °. Thus, to describe experimental data in this case and reduce 
the number of adjustable parameters, we may also use the dependence 0(log(V)) calculated for 
P~c = 0. 

Furthermore, analysis of experiments [see Dussan (1979) for a review] as well as theoretical 
models shows that besides the parameters of the classical model we must introduce some additional, 
intrinsic, parameters (e.g. the slip length, the relaxation time etc.) which are important for the 
moving contact-line description. Consequently, the system of dimensionless similarity parameters 
of the classical model is not complete and the attempts to represent all the experimental data by 
a single empirical correlation associated with this system, say 0d(Ca, 02) (Inverarity 1969; Hoffman 
1975), seems unfounded in principle. Some contradictions of such representations were pointed out 
by Dussan (1979). Thus, the experimental dependence of 0d on Ca must be interpreted as the 
dependence of 0d on the dimensionless contact-line speed. The dimensionless speed V introduced 
in the present paper is related to Ca by 

V = C a . Y u ;  Y u =  ~./~2( l + 4 A  " [46] 

The transition from co-ordinates (log(V), 0d) to (log(Ca), 0d) corresponds to the shift of a curve 
by log(Yu). We know that, as PIG = 0, changes in Pie lead to analogous shifts in the theoretical 
curve 0d(log(V)) (see figure 3). Thus, we may fix the value of Pie (say, pie = 0.99) and use the 
parameter log(Yu) to try to fit the theoretical curve to the experimental data. To verify the 
possibility of describing the whole experimental curve using one constant Iog(Yu), experiments in 
which the variation of 0d is large are chosen. A comparison of the theory with a number of 
experiments was carried out and, taking into account the same general behaviour of the 
experimental curves, in figures 9-12 we present the results of such a comparison for the well-known 
experimental data of Hoffman (1975) and the recent results of Str6m et al. (1990). The values of 
the parameters for the theoretical curves are given in figure captions. As is clear from this 
comparison, the theoretical curves are in good agreement with the experimental data. 
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Figure 13. Experimentaldata(Str6metal. 1990)of paraffin oilspreading on different so l ids ( l - -unt rea ted  
polystyrene, 0, = 0°; 2--polytetrafluoroethylene, 0s = 49 °) are described theoretically (3) using one and the 

same value of  Iog(Yu)= - 0 . 2 5  ( p ~  = 0, P)e = 0.99). 

Let us use another indirect way of testing the theory. The parameter Yu depends only on the 
properties of the liquid and of the gas-liquid interface (see [46]), and it is possible to fix this 
parameter by matching the theory with one of the experiments in the manner described above. 
Then, we may consider the spreading of the same liquid over another solid and see if the theory 
describes this experiment with the same value of Yu. The results of such testing show that it is really 
so (figure 13). 

It is necessary to point out that the second method of testing requires the estimation of the 
surface roughness effects, since otherwise a non-systematic experimental error may occur. 

Summing up the results presented in figures 9--13, we may come to the preliminary conclusion 
that the theory developed in the present paper is in good agreement with experiments performed 
on different solids using different liquids over a wide range of parameters. 

7. DISCUSSION 

As was shown in the previous sections, in the case of small Ca and Re the flow itself causes the 
surface tension gradient along the liquid-solid interface which strongly influences the flow and 
determines its macroscopic parameters. This effect may be called the self-induced Marangoni effect. 
The model based on the surface tension relaxation analysis: 

--eliminates the singularity of the shear stress inherent in the classical solution and 
allows us to calculate the force acting between a solid and a liquid which spreads 
on its surface; 

--is in agreement with direct experimental observations describing the fluid motion 
as rolling; 

--gives the contact angle dependence on the contact-line speed; 
---explains the existence of the limiting contact angles < 180°; 
--predicts the existence of the maximum contact-line speed and, consequently, the 

conditions of the incipient air entrainment. 

In section 2 we pointed out some common features between the physical background of the 
present theory and the works of Blake & Haynes (1969) and Huh & Mason (1977). Now let us 
compare the different theories from a formal mathematical point of view. The description of wetting 
phenomena requires the consideration of the Stokes (or Navier-Stokes) equations in the flow 
domains with piecewise smooth boundaries. In order to remove the shear-stress singularities at the 
edges, the conventional boundary conditions must be altered so that slippage near the moving 
contact lines can take place. However, the problem is that not only the shear stress but the shape 
of the flow domain is velocity dependent and, in addition to the classical boundary conditions 
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describing evolution of the smooth parts of the boundary, a theory for the contact angle 
dependence on the contact-line speed is required. Thus, an approach aimed only at the elimination 
of the shear-stress singularity is forced to use an additional, adjustable function--the dependence 
of the macroscopic (in our terminology) contact angle on the contact-line speed. Most existing 
theories postulate that the macroscopic dynamic contact angle is equal to the static one, 
independent of the contact-line speed. This assumption allows us to pose and solve mathematical 
problems associated with wetting processes but, as was shown by Zhou & Sheng (1990), is in 
conflict with experimental observations. The advantage of the present theory is that it describes 
both the velocity dependence of the apparent slip distribution and the contact angle evolution 
without any adjustable functions in the framework of a self-consistent approach based on a certain 
physical background. 

Now we will discuss the main assumptions which have been used in constructing the model and 
some possible ways for its generalization. In the derivation of the equations describing the process 
of interface formation we have used the simplest variant of Onsager's approach, in which the cross 
effects are neglected and the proportionality coefficients between the thermodynamic forces and 
fluxes are constant. We have also used additional simplifications--neglecting the mass exchange 
between the interface and the bulk due to the fluid motion and replacing the real equation of state 
for the surface phase by the linear one. Abandoning these simplifications, taking into account the 
dependence of Onsager's coefficients on the constitutive parameters and taking into consideration 
the cross-effects as well as the possible non-isothermal character of the process, we could obtain 
a number of more and more generalized models. However, such a generalization should be a 
consequence of the experimental verification of the simplest model which, as was shown in the 
present paper, is sufficient to describe the main features of the phenomenon. It is necessary to 
emphasize that Onsager's approach itself is valid only in the case when the deviations of the 
parameters from their equilibrium values are not "too large", and the conditions for its 
applicability must be determined experimentally as well. 

It is interesting to note that the problem [37], [42], [33], [39] and [43] could be easily reformulated 
for a non-Newtonian fluid. Indeed, the fluid rheology is manifested only by the function uo(Od), 
which represents the solution of the classical problem. If uo(Od) is replaced by the corresponding 
function of the "outer" flow of a non-Newtonian fluid, we could describe the spreading of this fluid 
on a solid surface. We remind the readers that in our model the interfaces are "ideal" in the 
hydrodynamic sense. 

It is noteworthy that conventional models developed on the basis of a purely macroscopic 
consideration of the solid surface roughness (Hocking 1976) could be combined with the present 
approach in a very natural way. According to this combination, the whole physical picture of 
wetting is as follows. If the solid surface is smooth, a liquid spreads over it in accordance with the 
model presented here. As the surface roughness increases, the present model begins to describe the 
wetting of surface roughness elements and the dynamic contact angle calculated here begins to 
deviate from the one formed by the gas-liquid interface and the "effective" plane surface of the 
solid. A further increase in the solid roughness and the speed of liquid spreading leads to the 
situation in which the speed of "wetting" due to the surface roughness (Hocking 1976) becomes 
greater than the one obtained here. In this case, the macroscopic picture of wetting is described 
by the model of Hocking (within the microscopic contact angle equal to 0d obtained in the present 
paper), while the present model remains valid for the description of the wetting of surface roughness 
elements at and behind the "front" of macroscopic "wetting". Thus, the new model presented here, 
being applicable to smooth solid surfaces, could be combined with conventional models of 
"wetting" due to the surface roughness and lead, at least in principle, to a model suitable for solid 
surfaces of arbitrary roughness. 
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